UNIVERSITY OF PARDUBICE	
Faculty of Chemical Technology	
DIRECTIVE No. 5/2025	
Subject:	Courses for Students in Doctoral Degree Programmes at the Faculty of Chemical Technology, University of Pardubice
Scope of applicability:	All departments of the Faculty of Chemical Technology at the University of Pardubice, students, supervisors and guarantors of doctoral study programmes
Effective from:	1 September 2025
Reference number:	UPCE/dfcht/00016409/2025
Compiled and submitted by:	doc. Ing. Petr Česla, Ph.D., Vice-Dean for Research and Creative Activities doc. Ing. Alena Komersová, Ph.D., Vice-Dean for External Relations prof. Ing. Petr Mošner, Dr., Vice-Dean for Education prof. Ing. Liběna Tetřevová, Ph.D., Vice-Dean for Internal Affairs
Approved by:	prof. Ing. Petr Němec, Ph.D.

Article 1

The Directive supplements Section 47 of Act No. 111/1998 Coll., on Higher Education Institutions and on Amendment and Supplementation of Other Acts (the Higher Education Act), as amended (hereinafter referred to as the "Higher Education Act") as well as the Section III of the Study and Examination Regulations of the University of Pardubice (hereinafter referred to as "SER UPCE") and Directive FChT UPCE No. 3/2025.

Article 2

(1) The study in the doctoral degree programme **Analytical Chemistry** is delivered by means of an individual study plan consisting of one compulsory course **English for scientists** – **B2**+, and at least three core elective courses from the list specified below. The selection of core elective courses shall be made under supervisor's guidance and shall correspond with the focus of the dissertation.

Core elective courses:

New Trends in Processing and Technology of Food Analysis of Toxicologically Important Substances Modern Methods of Protein Analysis Advances Immunoanalytical Methods Modern Methods of Atomic Spectrometry Development and Optimization of Advanced Chromatographic and Electrophoretic Separation Methods

Analytical Chemometry

Coupling of Modern Separation and Spectral Techniques in Analysis of Biologically Active Compounds in Natural Matrices

Modern Trends in Sample Treatment and Trace Analysis

Trends in Bioanalytical Instrumentation

Advanced Mass Spectrometry

Lipidomic Analysis

Modern Trends in Food Microbiology

Modern Trends in Analysis of Inorganic Materials and Resources

Electroanalytical Chemistry: Selected Chapters

(2) The study in the doctoral degree programme **Inorganic Chemistry** is delivered by means of an individual study plan consisting of one compulsory basic theoretical course **Modern Trends** in **Inorganic Chemistry**, mandatory course **English for scientists** - **B2**+, and two core elective courses. The selection of core elective courses shall be made under supervisor's guidance and shall correspond with the focus of the dissertation.

Core elective courses:

NMR Spectroscopy

X-ray Analysis

Advances in Bioinorganic Chemistry

Homogenous Catalysis

Symmetry of Molecules and its Applications

Complementary Methods of Structural Research

Advances in Organometallic and Coordination Chemistry

Quantum Chemistry Applications

Advanced Solid State Chemistry

(3) The study in the doctoral degree programme **Inorganic Technology** is delivered by means of an individual study plan consisting of two compulsory courses **Advanced Inorganic Technology**, **English for scientists** – **B2**+, and at least two core elective courses. The selection of core elective courses shall be made under supervisor's guidance and shall correspond with the focus of the dissertation.

Core elective courses:

Methods of Characterization in Inorganic Technology

Advanced Evaluation of Inorganic Pigments

Management Systems in Chemical Industry for Engineers

Study of Solid State Reactions

Phase Transitions

Adsorption on Solids

Chemical Engineering Processes in Inorganic Technology

Advanced Calorimetric and Thermoanalytic Methods

Current Trends in Analysis of Inorganic Materials and Resources

Nanomaterials and Nanotechnology

(4) The study in the doctoral degree programme **Biochemistry** is delivered by means of an individual study plan consisting of one compulsory course **English for scientists** - **B2**+, and at least three core elective courses from the list specified below. The selection of core elective courses shall be made under supervisor's guidance and shall correspond with the focus of the dissertation.

Core elective courses:

Biochemistry of Microorganisms
Biochemistry of Immunopathological States
Cellular Signaling
Lipidomic Analysis
Metabolomics
Pathobiochemistry
Advanced Immunochemistry
Advanced Methods of Cell Biology
Advances in Bioorganic Chemistry
Plant Biochemistry
Techniques for Immobilization and Conjugation of Bioactive Substances

(5) The study in the doctoral degree programme **Physical Chemistry** is delivered by means of an individual study plan consisting of one compulsory course **English for scientists** - **B2**+, and three core elective courses from the list specified below. The selection of core elective courses shall be made under supervisor's guidance and shall correspond with the focus of the dissertation.

Core elective courses:

Zeolites and Molecular Sieves
Spectroscopy in Catalysis
Advanced Calorimetric and Thermal Analysis Methods
Statistical Thermodynamics
Advanced Chemistry of Solids
Chemical Kinetics
Adsorption on Solids
Methods of Modelling in Physical Chemistry
Kinetic Processes in Glass-forming Systems
Advanced Phase Equilibrium
Modeling in Pharmacokinetics and Pharmacodynamics
Advances and Trends in Pharmacochemistry
Testing Methods of Pharmaceutical Technology
Photocatalytic Processes

(6) The study in the doctoral degree programme Chemical and Process Engineering with specialization in Chemical Engineering and Environmental Engineering is delivered by means of an individual study plan consisting of one basic theoretical course Separation Processes in Chemical and Environmental Engineering, one compulsory course English for scientists – B2+

and two core elective courses from the list specified below. The selection of core elective courses shall be made under supervisor's guidance and shall correspond with the focus of the dissertation.

Core elective courses – specializace Chemical Engineering:

Diffusion. Mass Transfer in Fluid Systems

Diffusion and Electrodiffusion Membrane Processes

Chemical Kinetics and Reactors

Mathematical Modelling in Chemical Processes

Numerical Methods for Chemical Engineers

Optimization

Theoretical Aspects of Fluid Flow and Heat Transfer

Pressure Driven Membrane Processes

Selected Difussional Operations

Core elective courses – specializace Environmental Engineering

Ecotoxicology

Electrochemistry in Environmental Protection

Environmental Biotechnology

Environmental Nanochemistry

Modern Methods of Waste Disposal

Monitoring of Contaminants in the Environment

Planning and Analysis of the Environmental Experiment

Advanced Environmental Technologies

Pressure Driven Membrane Processes

Sustainable Technologies in Chemical Production

(7) The study in the doctoral degree programme Chemistry and Technology of Inorganic Materials is delivered by means of an individual study plan consisting of one compulsory course English for Scientists – B2+ and at least three core elective courses from the list specified below. The selection of core elective courses shall be made under supervisor's guidance and shall correspond with the focus of the dissertation.

Core elective courses:

Advances in the Chemistry and Technology of Inorganic Materials

Advanced Chemistry of Solids

Selected Chapters from Solid State Physics

Preparation of Thin Films and Coatings

Materials for Electronics, Optics and Optoelectronics

Nanomaterials and Nanotechnology

Optical Properties of Non-crystalline Materials

Materials for Thermoelectric Applications

Advanced Characterization Methods of Powders

Thermoanalytical Methods of the Investigation of Non-crystalline Materials

Advanced Surface Characterization Methods of Materials

Study of Inorganic Materials Structure by Vibrational and Electron Spectroscopy

NMR and ESR of Solids

(8) The study in the doctoral degree programme **Engineering of Energetic Materials** is delivered by means of an individual study plan consisting of one compulsory course **English for scientists** – **B2**+ and three core elective courses from the list specified below. The selection of core elective courses shall be made under supervisor's guidance and shall correspond with the focus of the dissertation.

Core elective courses:

Advanced Theory of Explosion I
Advanced Theory of Explosion II
Advanced Technology of Energetic Materials
Advanced Pyrotechnic and Propellants
Advanced Safety Engineering
Infrared and Raman Spectroscopy of Energetic Materials
Advanced Organic Synthesis
Advanced Chemistry of Heterocyclic Compounds
Modern Trends in Inorganic Chemistry
Advances in Organometallic and Coordination Chemistry
Modern Materials
Advanced Calorimetric and Thermal Analysis Methods
Numerical Methods for Chemical Engineers

(9) The study in the doctoral degree programme **Organic Chemistry** is delivered by means of an individual study plan consisting of one compulsory course **English for scientists** – B2+ and at least three core elective courses from the list specified below. The selection of core elective courses shall be made under supervisor's guidance and shall correspond with the focus of the dissertation.

Core elective courses:

Advanced Organic Synthesis
Advanced Organic Materials
Construction of C-C and C-X Bonds Using Modern Organometallic Reagents
Exploring Organic Molecules Using Quantum-Chemical Calculations
Advanced Stereochemistry
Advances in Bioorganic Chemistry
Advanced Physical Organic Chemistry
Kinetic Methods in Physical Organic Chemistry
Contemporary Trends in Study of Reaction Mechanisms
Advances and Trends in Pharmacochemistry
Modern Methods of Heterocycles Synthesis
Supramolecular Chemistry
Mass Spectrometry in Organic Analysis
Advanced NMR Spectroscopy of Organic Compounds

(10) The study in the doctoral degree programme **Organic Technology** is delivered by means of an individual study plan consisting of one compulsory course **English for scientists** - **B2**+ and at least three core elective courses from the list specified below. The selection of core elective courses shall be made under supervisor's guidance and shall correspond with the focus of the dissertation.

Core elective courses:

Advanced Organic Dyes and Pigments

Functional Colorants

Advanced Technology in Application and Coloring

Photochemical Technology

Advances and Trends in Pharmacochemistry

Human Physiology

Structure and Properties of Bio-polymers and Their Physical and Chemical Treatment

Medical Nanobiotechnology

Advanced Safety Engineering

Advanced Physics of Explosion

Advanced Technology of Energetic Materials

Infrared and Raman Spectroscopy of Energetic Materials

Advanced Technologies in Industrial Synthesis

Advanced Processes and Equipment in the Industrial Synthesis

Industrial Catalytic Processes

Advanced Organic Synthesis

Quantum Chemistry Methods

Advanced Chemistry of Heterocyclic Compounds

Advanced NMR Spectroscopy of Organic Compounds

Process Management of Production Systems

Strategic Marketing Management

Advanced Formulations of |Physical – Chemical Problems

(11) The study in the doctoral degree programme **Surface Engineering** is delivered by means of an individual study plan consisting of one compulsory course **English for scientists** - **B2**+ and at least three core elective courses from the list specified below. The selection of core elective courses shall be made under supervisor's guidance and shall correspond with the focus of the dissertation.

Core elective courses:

Chemistry of Organic Coatings

Selected Chapters from Macromolecular Chemistry

Materials Science

Formulation and Formation of Organic and Functional Coatings

Separation and Characterization of Synthetic and Natural Macromolecules

Advanced Methods of Thermal Analysis

Thin Films and Coatings

Materials for Photonics

Stability and Degradation of Materials

Printing Technologies for Materials Research

Physics of Surfaces

Article 3

Transitional and Final Provisions

- (1) This Directive shall become valid on the date of signature.
- (2) This Directive shall become effective on 1 September 2025.
- (3) This Directive applies to students enrolling in the first year of a doctoral study programme starting in the academic year 2025/2026. FChT Directives No. 10/2019 do not apply to these students.

In Pardubice, on 13 August 2025

prof. Ing. Petr Němec, Ph.D.

Dean