Skip to main content

Login for students

Login for employees

Publication detail

Investigation of Bronsted acidity in zeolites through adsorbates with diverse proton affinities
Authors: Trachta Michal | Bludsky Ota | Vaculík Jan | Bulánek Roman | Rubeš Miroslav
Year: 2023
Type of publication: článek v odborném periodiku
Name of source: Scientific Reports
Publisher name: Nature Publishing Group
Place: London
Page from-to: "12380-1"-"12380-11"
Titles:
Language Name Abstract Keywords
cze Studium Bronstedovy kyselosti v zeolitech prostřednictvím adsorbátů s různou protonovou afinitou ​ Pochopení adsorpčního chování bazických sond v aluminosilikátech a jeho vztahu k vnitřní aciditě Bronstedových kyselých poloh (BAS) je zásadní pro katalytické aplikace těchto materiálů. V této studii jsme zkoumali adsorpční vlastnosti molekul s různou afinitou protonů (acetonitril, aceton, formamid a amoniak) v šesti různých aluminosilikátových strukturách (FAU, CHA, IFR, MOR, FER a TON). Důležitým cílem bylo navrhnout robustní kritérium pro hodnocení vnitřní kyselosti BAS (tj. stav deprotonace BAS). molekulární dynamika; NMR; kyselost; katalyzátor; zeolit; adsorpce; simulace
eng Investigation of Bronsted acidity in zeolites through adsorbates with diverse proton affinities Understanding the adsorption behavior of base probes in aluminosilicates and its relationship to the intrinsic acidity of Bronsted acid sites (BAS) is essential for the catalytic applications of these materials. In this study, we investigated the adsorption properties of base probe molecules with varying proton affinities (acetonitrile, acetone, formamide, and ammonia) within six different aluminosilicate frameworks (FAU, CHA, IFR, MOR, FER, and TON). An important objective was to propose a robust criterion for evaluating the intrinsic BAS acidity (i.e., state of BAS deprotonation). Based on the bond order conservation principle, the changes in the covalent bond between the aluminum and oxygen carrying the proton provide a good description of the BAS deprotonation state. The ammonia and formamide adsorption cause BAS deprotonation and cannot be used to assess intrinsic BAS acidity. The transition from ion-pair formation, specifically conjugated acid/base interaction, in formamide to strong hydrogen bonding in acetone occurs within a narrow range of base proton affinities (812-822 kJ mol(-1)). The adsorption of acetonitrile results in the formation of hydrogen-bonded complexes, which exhibit a deprotonation state that follows a similar trend to the deprotonation induced by acetone. This allows for a semi-quantitative comparison of the acidity strengths of BAS within and between the different aluminosilicate frameworks. initio molecular-dynamics; nmr chemical-shifts; solid acids; scaling relations; reactivity; catalysts; strength; transition; adsorption; simulation