Přejít k hlavnímu obsahu

Přihlášení pro studenty

Přihlášení pro zaměstnance

Publikace detail

Electrical Impedance Spectroscopy: "First Principles" analysis and simulations of electrical response in the classical range of frequencies below 1 THz and the resulting new role of Electrical Impedance Spectroscopy in electrical characterisation within Condensed Matter Physics
Autoři: Viščor Peter | Viščor Martin
Rok: 2019
Druh publikace: článek v odborném periodiku
Název zdroje: Pure and Applied Chemistry
Název nakladatele: Walter de Gruyter GmbH & Co. KG
Místo vydání: Berlin
Strana od-do: 1837-1856
Tituly:
Jazyk Název Abstrakt Klíčová slova
cze Electrical Impedance Spectroscopy: "First Principles" analysis and simulations of electrical response in the classical range of frequencies below 1 THz and the resulting new role of Electrical Impedance Spectroscopy in electrical characterisation within Condensed Matter Physics In order to investigate the full potential of the Electrical Impedance Spectroscopy (EIS) when used to address various aspects of conductive and dielectric response within the field of Condensed Matter Physics and Electrochemistry, a new analysis of the electrical impedance experiments has been undertaken. Within the framework of quantum mechanical band structure and using the concept of electrochemical potential for each of the relevant energies, the problem of electrical response in condensed phase has been formulated, using augmented Maxwell equations of Classical Electrodynamics, as a boundary value problem of a set of coupled, non-linear parabolic equations in energy, space and time. The result of this numerical analysis is a principal possibility of a complete electrical characterisation of both monocrystals, glassy solids and liquids. The EIS has been put in this way on a new qualitative level and should be considered now as the most general electrical experimental characterisation tool available. In this article, a methodology of numerical simulations of electrical response in condensed matter systems at classical frequencies (from similar to 1 THz down to dc) is presented and the numerical simulation results are then discussed, using monocrystalline Silicon, chalcogenide glass ion conductor Ag-x(AsS2)(1-x) and simple aqueous chloride solution as experimental test cases. Some other unique results of the new EIS analysis will also be discussed. These include the possibility of a clear distinction between the contribution to the electrical response from bound and mobile electrical charges, the possibility of simultaneous and independent determination of the mobile electrical charges mobility and their density in one EIS experiment and incorporation of the interfacial regions of the system under test (SUT) as an essential part of the overall electrical response.
eng Electrical Impedance Spectroscopy: "First Principles" analysis and simulations of electrical response in the classical range of frequencies below 1 THz and the resulting new role of Electrical Impedance Spectroscopy in electrical characterisation within Condensed Matter Physics In order to investigate the full potential of the Electrical Impedance Spectroscopy (EIS) when used to address various aspects of conductive and dielectric response within the field of Condensed Matter Physics and Electrochemistry, a new analysis of the electrical impedance experiments has been undertaken. Within the framework of quantum mechanical band structure and using the concept of electrochemical potential for each of the relevant energies, the problem of electrical response in condensed phase has been formulated, using augmented Maxwell equations of Classical Electrodynamics, as a boundary value problem of a set of coupled, non-linear parabolic equations in energy, space and time. The result of this numerical analysis is a principal possibility of a complete electrical characterisation of both monocrystals, glassy solids and liquids. The EIS has been put in this way on a new qualitative level and should be considered now as the most general electrical experimental characterisation tool available. In this article, a methodology of numerical simulations of electrical response in condensed matter systems at classical frequencies (from similar to 1 THz down to dc) is presented and the numerical simulation results are then discussed, using monocrystalline Silicon, chalcogenide glass ion conductor Ag-x(AsS2)(1-x) and simple aqueous chloride solution as experimental test cases. Some other unique results of the new EIS analysis will also be discussed. These include the possibility of a clear distinction between the contribution to the electrical response from bound and mobile electrical charges, the possibility of simultaneous and independent determination of the mobile electrical charges mobility and their density in one EIS experiment and incorporation of the interfacial regions of the system under test (SUT) as an essential part of the overall electrical response. Condensed Matter Physics; dielectric relaxation; electrical characterisation methods; electrical response; electrical transport; electrochemistry; insulators; physics of glasses; semiconductor physics; SSC-2018