Přejít k hlavnímu obsahu

Přihlášení pro studenty

Přihlášení pro zaměstnance

Publikace detail

THERMODYNAMIC MODEL OF CaO-SiO2 GLASSES
Autoři: Liska Marek | Machacek Jan | Chromcikova Maria | Svoboda Roman
Rok: 2020
Druh publikace: článek v odborném periodiku
Název zdroje: Ceramics-Silikaty
Název nakladatele: Vysoká škola chemicko-technologická v Praze
Místo vydání: Praha
Strana od-do: 63-67
Tituly:
Jazyk Název Abstrakt Klíčová slova
cze Termodynamický model CaO-SiO2 skel Termodynamický model skel založených na systému CaO-SiO2 byl vytvořen na základě Shakhmatkin-Vedishcheva modelu a testován pomocí výsledků MAS NMR výsledků měření. termdynamický model; CaO-SiO2 sklo; Q-distribuce
eng THERMODYNAMIC MODEL OF CaO-SiO2 GLASSES The CaO-SiO2 glass forming system is a typical example of a situation when the Shakhmatkin and Vedishcheva thermodynamic model cannot explain the experimentally determined Q-units distribution. As the system components are determined as stable crystalline phases found in the equilibrium phase diagram, the reason of the model failure is the missing system component representing the Q(3) structural unit. We suggested a solution to the problem by adding an artificial CaO center dot 2SiO(2) component and we proposed a method of estimating the Gibbs energy of this component. The method is based on the linear relationship found between the reaction Gibbs energy of the formation of the system components representing the different Qn units (n = 3, 2, 1, 0) divided by the number of non-bridging oxygen atoms in this particular component (i.e., 4-n) on one side and the n value on the other side. The method was qualified by the good coincidence of the model results with the MAS NMR experimentally determined Q-distribution. Moreover, the estimated value of Gibbs energy practically coincides with the optimised value obtained by minimising the sum of the squares of the d eviations between the experimental and calculated Q-distribution with respect to the molar Gibbs energy of CaO center dot 2SiO(2). Thermodynamic model; CaO-SiO2 glass; Q-distribution