Přejít k hlavnímu obsahu

Přihlášení pro studenty

Přihlášení pro zaměstnance

Publikace detail

OPTIMIZING NANOFILTRATION FOR SUSTAINABLE PHARMACEUTICAL WASTEWATER TREATMENT USING RESPONSE SURFACE METHODOLOGY AND ARTIFICIAL NEURAL NETWORKS.
Rok: 2025
Druh publikace: ostatní - článek ve sborníku
Název zdroje: Workshop of Student's Presentation 2025 : book of abstracts
Název nakladatele: Czech Membrane Platform
Místo vydání: Česká Lípa
Strana od-do: nestránkováno
Tituly:
Jazyk Název Abstrakt Klíčová slova
eng OPTIMIZING NANOFILTRATION FOR SUSTAINABLE PHARMACEUTICAL WASTEWATER TREATMENT USING RESPONSE SURFACE METHODOLOGY AND ARTIFICIAL NEURAL NETWORKS. This study presents a comparative modelling approach for predicting pharmaceutical rejection from synthetic wastewater using thin-film composite nanofiltration membranes (AFC 40 and AFC 80). Three key process parameters, transmembrane pressure (10–30 bar), feed flow rate (5–15 L/min), and feed concentration (5–20 mg/L) were evaluated to optimize system performance. Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) were applied to model and predict solute rejection behaviour. The findings highlight the potential of machine learning-based predictive tools in optimizing nanofiltration processes for pharmaceutical removal, offering a robust framework for advancing sustainable wastewater treatment strategies. OPTIMIZING; NANOFILTRATION; PHARMACEUTICAL; WASTEWATER; RESPONSE SURFACE METHODOLOGY; ARTIFICIAL NEURAL NETWORKS.