Přejít k hlavnímu obsahu

Přihlášení pro studenty

Přihlášení pro zaměstnance

Publikace detail

Adsorption of CO2 in FAU zeolites: Effect of zeolite composition
Autoři: Thang Ho Viet | Grajciar Lukas | Nachtigall Petr | Bludsky Ota | Otero Arean Carlos | Frýdová Eva | Bulánek Roman
Rok: 2014
Druh publikace: článek v odborném periodiku
Název zdroje: Catalysis Today
Název nakladatele: Elsevier Science BV
Místo vydání: Amsterdam
Strana od-do: 50-56
Tituly:
Jazyk Název Abstrakt Klíčová slova
cze Adsorpce CO2 na FAU zeolity: Efekt složení zeolitu Mnoho technologických procesů využívá separaci CO2 z plynné směsi. Jedním z možných médií pro adsorpci CO2 jsou zeolity typu FAU. Tato studie byla zaměřena na výzkum CO2 adsorpce na zeolitech FAU včetně faktorů, které tuto adsorpci ovlivňují. DFT/CC; CO2; uchování; zeolit; adsorpční kalorimetrie
eng Adsorption of CO2 in FAU zeolites: Effect of zeolite composition Many technological processes, mainly in the energy sector, require separation of carbon dioxide from gas mixtures. For that purpose medium and large pore zeolites can be used, provided that the differential CO2 adsorption energy allows thermodynamic separation under equilibrium conditions. Hence the convenience to have a precise knowledge (at the molecular level) about the factors that control CO2 interaction with zeolites, and faujasite-type zeolites in particular, are most relevant in this context on account of their relatively high adsorption capacity. We report on a detailed spectroscopic, calorimetric and theoretical study on the effect of composition on equilibrium CO2 adsorption in alkali-metal exchanged faujasite-type zeolites, which, by combining experimental results with calculations performed at the DFT/CC level on a periodic model of the zeolite yields fine details on the CO2 adsorption complexes and corresponding gas-solid interaction energy. The results obtained are discussed in the broader context of other literature reports; showing, in particular, how the DFT/CC computational approach gives interaction energy values that are in better agreement with experimental data than those obtained using some other computational methods, which show larger limitations to account properly for dispersion interactions. We found out that: (i) dispersion interactions account for about 50% of the overall adsorption enthalpy of CO2 molecules in FAU zeolites, (ii) a very low (experimentally non-detectable) population of sites III and III was found for FAU zeolite with Si/A1 ratio 2.55:1 and all CO2 molecules are adsorbed on sites II and are tilted toward the zeolite wall due to the stabilizing effect of dispersion interactions between CO2 and zeolite, and (iii) minor heterogeneity of adsorption sites present in the FAU samples originating from differences in the number and geometry of Al atoms in the 6R of sites II. DFT/CC; CO2; Carbon capture and storage; Zeolite; Adsorption Calorimetry